SOURCE: The Guardian

DATE: October 21, 2019

SNIP: Ocean acidification can cause the mass extinction of marine life, fossil evidence from 66m years ago has revealed.

A key impact of today’s climate crisis is that seas are again getting more acidic, as they absorb carbon emissions from the burning of coal, oil and gas. Scientists said the latest research is a warning that humanity is risking potential “ecological collapse” in the oceans, which produce half the oxygen we breathe.

The researchers analysed small seashells in sediment laid down shortly after a giant meteorite hit the Earth, wiping out the dinosaurs and three-quarters of marine species. Chemical analysis of the shells showed a sharp drop in the pH of the ocean in the century to the millennium after the strike.

This spike demonstrated it was the meteorite impact that made the ocean more acidic, effectively dissolving the chalky shells of many species. Large-scale volcanic activity was also considered a possible culprit, but this occurred over a much longer period.

The oceans acidified because the meteorite impact vaporised rocks containing sulphates and carbonates, causing sulphuric acid and carbonic acid to rain down. The mass die-off of plants on land after the strike also increased CO2 in the atmosphere.

The researchers found that the pH dropped by 0.25 pH units in the 100-1,000 years after the strike. It is possible that there was an even bigger drop in pH in the decade or two after the strike and the scientists are examining other sediments in even finer detail.

Michael Henehan at the GFZ German research centre for geosciences in Potsdam said: “If 0.25 was enough to precipitate a mass extinction, we should be worried.” Researchers estimate that the pH of the ocean will drop by 0.4 pH units by the end of this century if carbon emissions are not stopped, or by 0.15 units if global temperature rise is limited to 2C.

The research, published in the journal Proceedings of the National Academy of Sciences, analysed sediments that Henehan encountered by chance, during a conference field trip in the Netherlands. The sediments, which straddle the moment of the impact, lie in caves that were used by people hiding from the Nazis during the second world war. “It was so lucky,” said Henehan.

The rocks contained foraminifera, small-shelled marine organisms. “In the boundary clay, we managed to capture them just limping on past the asteroid impact. But you can see their shell walls were much thinner and poorly calcified after the impact,” he said.

It was the knock-on effects of acidification and other stresses, such as the “nuclear winter” that followed the impact, that finally drove these foraminifera to extinction, he said: “You have the complete breakdown of the whole food chain.” He said oceans also faced additional stresses today, from global heating to widespread pollution, overfishing and invasive alien species.